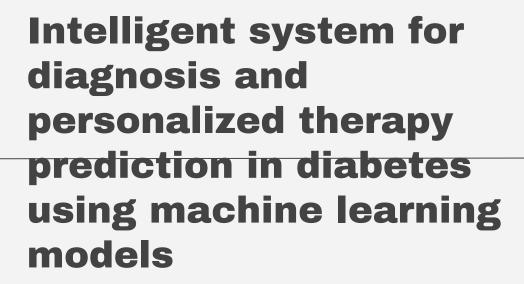
Simon Kuznets Kharkiv National University of Economics

Serhii Minukhin
Oleksandr Semenets



Main goal:

Develop an AI model that, based on clinical and lab data, automatically predicts daily insulin and oral drug doses for diabetes patients.

Pipeline:

- 1. Diabetes screening: yes or no
- 2. Diabetes type classification: T1DM or T2DM
- 3. Therapy prediction: daily insulin and (or) tablets

Machine Learning Methods

Traditional models: Decision Tree, Random Forest, Logistic Regression, KNN

Boosting models: XGBoost, LightGBM

Deep learning models: GRU, LSTM

Pipeline

Stage 1

Data → Preprocessing (improved missing values, normalization, summaries) → Models (Random Forest, Decision Tree, KNN, Logistic Regression, XGB, LGBM) → Evaluation → Top Models: LGBM, XGB, Random Forest

Stage 2

Data → Preprocessing → Models (same as Stage 1) → Evaluation → Top Models: LGBM, XGB, Logistic Regression

Stage 3

Data \rightarrow Preprocessing \rightarrow Database \rightarrow Feature Engineering (handle static and dynamic data) \rightarrow Model Training \rightarrow Evaluation \rightarrow Predictions (drug type and daily dosage (drugdose tensor))

Metric for 1-st and 2-nd stages

$$Accuracy = \frac{TP + TN}{TP + TN + FP + FN}$$

TP (True Positive) - correctly predicted positive cases.

TN (True Negative) - correctly predicted negative cases.

FP (False Positive) - the model incorrectly predicted "positive" when it was actually "negative."

FN (False Negative) - the model incorrectly predicted "negative" when it was actually "positive."

Results of the 1-st stage metrics

Random Forest Classifier	0.9498
Decision Tree Classifier	0.9405
KNeighbors Classifier	0.9247
Logistic Regression	0.9286
XGB Classifier	0.9693
LGBM Classifier	0.9708

Results of the 2-nd stage metrics

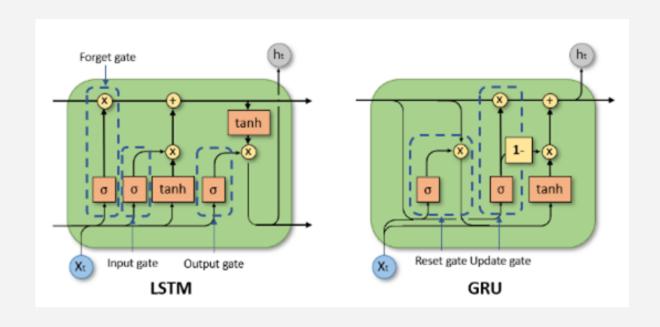
Random Forest Classifier	0.952
Decision Tree Classifier	0.801
KNeighbors Classifier	0.884
Logistic Regression	0.956
XGB Classifier	0.963
LGBM Classifier	0.965

3-rd main stage

Goal: Develop a model using **GRU and LSTM** to predict both drug type and daily dosage from patient clinical and temporal data, outputting a tensor linking each drug to its predicted dose.

Database: PostgreSQL. ORM: SQLAlchemy

What are GRU and LSTM?



Data Preparing:

Load and merge patient data Process insulin and non-insulin agents Handle missing values and clinical summaries Create a normalized dataset

Load data using SQLAlchemy Manage transactions: import, commit, rollback Repository setup for model data access

Model Training:

Static data: feature selection, normalization, categorical processing Dynamic data: patient grouping, temporal windows, PyTorch Dataset Combine static and dynamic features Train LSTM and GRU models for 10 epochs Evaluation metric: Mean Squared Error (MSE)

Results of the 3rd stage metrics (MSE)

LSTM (Long Short-Term Memory): A special kind of neural network that can remember important information over long sequences of data. It's great for time-dependent data like patient history, stock prices, or speech.

GRU (**Gated Recurrent Unit**): Similar to LSTM but simpler and faster. It also remembers important information over sequences, but with fewer steps, making it quicker to train.

GRU (10 epoch)	LSTM (10 epoch)
0.019016	0.015577
0.007194	0.007005
0.006796	0.006735
0.006456	0.006561
0.006213	0.006453
0.006026	0.006241
0.005748	0.006261
0.005561	0.005922
0.005375	0.005735
0.005205	0.005603

Conclusions

- 1. Gradient boosting models (LGBM, XGB) consistently achieved the best accuracy.
- 2. Decision Tree and KNN showed weak performance across both stages.
- 3. GRU and LSTM effectively captured temporal patterns, with steadily decreasing MSE.
- 4. Combining boosting (for tabular data) and recurrent networks (for sequences) enables accurate prediction of drug type and daily dosage.

Sources:

- 1. https://www.kaggle.com/code/tumpanjawat/diabetes-eda-random-forest-hp
- 2. https://www.sqlalchemy.org/
- 3. https://figshare.com/articles/dataset/Diabetes_Datasets-ShanghaiT1DM and ShanghaiT2DM/20444397
- 4. https://docs.pytorch.org/docs

Thank for Your attention!