

Sustainable Development of River Ecosystems in a Vulnerable World Using Optimization of Monitoring Networks and the Entropy-Based Approach to Water Quality Control

1 INTRODUCTION AND MAJOR CHALLENGES

Importance of River Monitoring

- . Global Context: This research aligns with the UN Sustainable Development Goals (SDGs), specifically:
 - Goal 6: Ensure availability and sustainable management of water and sanitation for all.
 - Goal 12: Promote sustainable consumption and production patterns.

. Ukrainian Context:

- Rivers in Ukraine face significant anthropogenic impacts.
- Effective ecological monitoring is crucial to mitigate pollution and manage resources.

. Main Challenge:

Identify a minimal yet highly informative set of parameters to optimize river monitoring.

2 AIM AND RESEARCH TASKS

Aim of the Study:

. To develop an optimized methodology for river monitoring based on the Maximum Informativeness with Minimum Redundancy (MIMH) principle.

Research Tasks:

Identify key parameters for water quality monitoring of three major rivers in Ukraine:

- Southern Bug
- . Dniester
- 。 Siverskyi Donets

Apply the MIMH principle to ensure informativeness while minimizing redundancy.

Propose a cost-effective and scalable framework for ecological monitoring.

Methodology Overview

Why Maximum Informativeness with Minimum Redundancy (MIMH)?

- Traditional methods (e.g., PCA, cluster analysis) are subjective and require large datasets.
- . MIMH:
 - Maximizes informational content of selected parameters.
 - Reduces data duplication and redundancy.
 - Focuses on efficient monitoring of critical water quality indicators.

. Equations:

Present equations for entropy calculation and redundancy reduction, such as:

Max:
$$H(X_{S1}, ... X_{Sk}) + \sum_{i=1}^{m} T(X_{S1:Sk}; X_{Fi})$$

Key Indicators:

- . Chemical: Phosphates, nitrates, sulfates, chlorides.
- . Biological: Dissolved oxygen, biochemical oxygen demand (BOD5).

Physical: Suspended solids.

Data Collection and Analysis

Data Sources:

- . Monitoring data from three Ukrainian rivers.
- Longitudinal data on water quality parameters, including seasonal and regional variations.

Steps in Analysis:

Use entropy theory to calculate joint information and redundancy among parameters.

Identify key parameters with the highest mutual information.

Optimize parameter selection to achieve balance between informativeness and cost.

Results - Southern Bug River

The mutual information calculations for each parameter relative to the overall state of water quality identified the following parameters as the most informative:

- Phosphates with mutual information of 1.2912;
- Chemical Oxygen Demand (COD) with mutual information of 1.2815;
- Nitrates with mutual information of 1.1903;
- Dissolved Oxygen with mutual information of 1.1834;
- Biochemical Oxygen Demand (BOD₅) with mutual information of 1.1664.

Results – Southern Bug River

	Phosphates	COD	Nitrates	Dissolved Oxygen	BOD ₅
Phosphates					
	1	0,991	0,994	0,965	0,997
COD					
	0,991	1	0,997	0,969	0,991
Nitrates					
	0,994	0,997	1	0,968	0,993
Dissolved Oxygen					
	0,965	0,969	0,968	1	0,964
BOD ₅					
	0,997	0,991	0,993	0,964	1

Results - Southern Bug River

Optimal Parameters:

- . Phosphates: High informativeness for assessing nutrient pollution.
- . Nitrates: Critical for identifying agricultural runoff impacts.
- . Dissolved Oxygen (or BOD5):
 - Reflects biological activity and organic pollution.
 - Selection depends on specific monitoring objectives.

Key Insight:

. Reduction in redundant parameters enhances monitoring efficiency while maintaining accuracy.

Results - Dniester River

Optimal Parameters:

- . BOD5: Essential for assessing organic pollution levels.
- . Nitrates: Indicates hazardous nitrogen levels from agricultural sources.
- . Dissolved Oxygen (or Sulfates):
 - Supports assessment of biological activity and chemical pollution.

Significance:

. This parameter set ensures comprehensive coverage of water quality challenges specific to the Dniester River.

Results – Siverskyi Donets River

Optimal Parameters:

- . Sulfates (or Chlorides): Reflect chemical pollutants from industrial discharges.
- . BOD5: Indicates organic pollution levels.
- . Suspended Solids (or Dissolved Oxygen):
 - Provides insights into sedimentation and biological health.

Key Takeaway:

. The selected parameters balance chemical, biological, and physical indicators for effective monitoring.

Comparative Results for All Rivers

River	Key Parameters	Focus
Nollinern Klid	Phosphates, Nitrates, Dissolved Oxygen/BOD5	Nutrient pollution and oxygenation
II)niester	BOD5, Nitrates, Dissolved Oxygen/Sulfates	Organic and chemical pollution
NIVARSKVI DODATS	Sulfates, BOD5, Suspended Solids/Dissolved Oxygen	Industrial and sediment impacts

Efficiency Gains:

Up to 30% reduction in redundancy.

Cost-effective allocation of resources.

Practical Applications

Benefits of the MIMH Approach:

Improved Monitoring Systems:

- Higher frequency of observations for selected parameters.
- Better resource allocation for monitoring programs.

Enhanced Decision-Making:

- Supports policymakers with accurate and concise data.
- Provides actionable insights for water resource management.

Scalability:

Can be applied to other river systems in Ukraine and globally.

CONCLUSIONS

Summary of Contributions:

- . MIMH ensures optimal parameter selection for effective river monitoring.
- The approach provides a balance of cost, accuracy, and informativeness.
- . Proposed frameworks are tailored to the unique ecological challenges of each river.

Future Directions:

- . Integration with digital monitoring technologies.
- . Expansion of the methodology to other ecosystems and regions,

CONTACTS

Vitalii Bezsonnyi

av. Nauky 9-a

+38095 78 093078

vitalii.bezsonnyi@hneu.net

https://www.hneu.edu.ua/

THANK YOU VERY MUCH FOR YOUR ATTENTION!

